Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes.

نویسندگان

  • T H Grossman
  • M Tuckman
  • S Ellestad
  • M S Osburne
چکیده

In response to iron deprivation, Bacillus subtilis secretes a catecholic siderophore, 2,3-dihydroxybenzoyl glycine, which is similar to the precursor of the Escherichia coli siderophore enterobactin. We isolated two sets of B. subtilis DNA sequences that complemented the mutations of several E. coli siderophore-deficient (ent) mutants with defective enterobactin biosynthesis enzymes. One set contained DNA sequences that complemented only an entD mutation. The second set contained DNA sequences that complemented various combinations of entB, entE, entC, and entA mutations. The two sets of DNA sequences did not appear to overlap. AB. subtilis mutant containing an insertion in the region of the entD homolog grew much more poorly in low-iron medium and with markedly different kinetics. These data indicate that (i) at least five of the siderophore biosynthesis genes of B. subtilis can function in E. coli, (ii) the genetic organization of these siderophore genes in B. subtilis is similar to that in E. coli, and (iii) the B. subtilis entD homolog is required for efficient growth in low-iron medium. The nucleotide sequence of the B. subtilis DNA contained in plasmid pENTA22, a clone expressing the B. subtilis entD homolog, revealed the presence of at least two genes. One gene was identified as sfpo, a previously reported gene involved in the production of surfactin in B. subtilis and which is highly homologous to the E. coli entD gene. We present evidence that the E. coli entD and B. subtilis sfpo genes are interchangeable and that their products are members of a new family of proteins which function in the secretion of peptide molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, a regulator of tryptophan biosynthesis.

mtrA of Bacillus subtilis was shown to be the structural gene for GTP cyclohydrolase I, an enzyme essential for folic acid biosynthesis. mtrA is the first gene in a bicistronic operon that includes mtrB, a gene involved in transcriptional attenuation control of the trp genes. mtrA of B. subtilis encodes a 20-kDa polypeptide that is 50% identical to rat GTP cyclohydrolase I. Increased GTP cycloh...

متن کامل

Pirated Siderophores Promote Sporulation in Bacillus subtilis

In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabol...

متن کامل

Enhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus

Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...

متن کامل

Biosynthesis of active Bacillus subtilis urease in the absence of known urease accessory proteins.

Bacillus subtilis contains urease structural genes but lacks the accessory genes typically required for GTP-dependent incorporation of nickel. Nevertheless, B. subtilis was shown to possess a functional urease, and the recombinant enzyme conferred low levels of nickel-dependent activity to Escherichia coli. Additional investigations of the system lead to the suggestion that B. subtilis may use ...

متن کامل

The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli.

A search for genes involved in the inactivation and degradation of enzymes in sporulating Bacillus subtilis led to identification of the B. subtilis degA gene, whose product stimulates degradation of B. subtilis glutamine phosphoribosylpyrophosphate amidotransferase in Escherichia coli cells. degA encodes a 36.7-kDa protein that has sequence similarity to several E. coli and B. subtilis regulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 175 19  شماره 

صفحات  -

تاریخ انتشار 1993